Homoclinic Orbits in Saddle-center Reversible Hamiltonian Systems

نویسندگان

  • Gerson Francisco
  • André Fonseca
چکیده

We study the existence of homoclic solutions for reversible Hamiltonian systems taking the family of differential equations u + au′′ − u + f(u, b) = 0 as a model. Here f is an analytic function and a, b real parameters. These equations are important in several physical situations such as solitons and in the existence of “finite energy” stationary states of partial differential equations. We reduce the problem of computing these orbits to that of finding the intersection of the unstable manifold with a suitable set and then apply it to concrete situations. No assumptions of any kind of discrete symmetry is made and the analysis here developed can be successfully employed in situations where standard methods fail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-round Homoclinic Orbits to a Hamiltonian with Saddle-center

We consider a real analytic, two degrees of freedom Hamiltonian system possessing a homoclinic orbit to a saddle-center equilibrium p (two nonzero real and two nonzero imaginary eigenvalues). We take a two-parameter unfolding for such the system and show that in nonresonance case there are countable sets of multiround homoclinic orbits to p. We also find families of periodic orbits, accumulatin...

متن کامل

Homoclinic Orbits in Reversible Systems II: Multi-bumps and Saddle-centres

This article extends a review in [9] of the theory and application of homoclinic orbits to equilibria in even-order, time-reversible systems of autonomous ordinary differential equations, either Hamiltonian or not. Recent results in two directions are surveyed. First, a heteroclinic connection between a saddle-focus equilibrium and a periodic orbit is shown to arise from a certain codimension-t...

متن کامل

Slow Passage through a Saddle-Center Bifurcation

Slowly varying conservative one-degree of freedom Hamiltonian systems are analyzed in the case of a saddle-center bifurcation. Away from unperturbed homoclinic orbits, strongly nonlinear oscillations are obtained using the method of averaging. A long sequence of nearly homoclinic orbits is matched to the strongly nonlinear oscillations before and after the slow passage. Usually solutions pass t...

متن کامل

Cascades of homoclinic orbits to a saddle-centre for reversible and perturbed Hamiltonian systems

The bifurcation of double-pulse homoclinic orbits under parameter perturbation is analysed for reversible systems having a homoclinic solution that is biasymptotic to a saddle-centre equilibrium. This is a non-hyperbolic equilibrium with two real and two purely imaginary eigenvalues. Reversibility enforces that small perturbations will not change this eigenvalue connguration. It is found that (...

متن کامل

Symmetric Homoclinic Orbits at the Periodic Hamiltonian Hopf Bifurcation

We prove the existence of symmetric homoclinic orbits to a saddle-focus symmetric periodic orbit that appears in a generic family of reversible three degrees of freedom Hamiltonian system due to periodic Hamiltonian Hopf bifurcation, if some coefficient A of the normal form of the fourth order is positive. If this coefficient is negative, then for the opposite side of the bifurcation parameter ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004